ORGANIC LETTERS

2013 Vol. 15, No. 12 3066–3069

NHC-Catalyzed *O*-Selective Addition of Nitrosoarenes with Aldehydes

Gang Wang,[†] Xia Chen,[†] Yi Zhang,^{†,‡} Weijun Yao,[†] and Cheng Ma*,[†]

Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China, and Zhejiang Tianyu Pharmaceutical Co., Ltd., Taizhou, China

mcorg@zju.edu.cn

Received May 4, 2013

ABSTRACT

An NHC-catalyzed *O*-selective addition of nitrosoarenes with aldehydes probably upon a dual-activation mode was developed, generating a variety of *O*-acyl hydroxylamines without any detectable competing amidation byproducts.

Selective transformations of the same starting materials into two or more different products simply by the choice of catalyst provide an expedient approach to molecular diversity synthesis. Nitroso compounds are versatile reagents utilized as a nitrogen and/or an oxygen source in organic synthesis. Due to their high reactivity based on the polarization of the N–O bond and specific structure by the equilibration between the monomer and azodioxy dimer, the control of chemo- and regioselectivity for various catalytic reactions using nitroso derivatives is a challenge of fundamental importance.

N-Heterocyclic carbene (NHC) catalysis has developed to a powerful tool for chemical synthesis during the past decade. 4 Notably, a variety of NHC-catalyzed reactions of aldehydes with nitroso compounds, such as amidation.⁵ cycloaddition, ⁶ and three-component reactions involving enone components⁷ have been achieved primarily upon the nucleophilic attack of Breslow intermediate I or II at the nitrogen atom of nitroso groups (Scheme 1a). Moreover. Lobo and Prabhakar have also studied a model reaction of 2-(α-hydroxyalkyl)-3.4-dimethylthiazoliums, a precursor of I, with nitrosoarenes in the presence of base and find the formation of a mixture of O- and N-acylhydroxylamine products. Heretofore, the catalytic O-selective attack of Breslow intermediate I on nitroso electrophiles to form C-O bonds remains to be exploited. We envisaged that if an appropriate Lewis acid/hydrogen-bonding donor could

[†] Zhejiang University.

[‡] Zhejiang Tianyu Pharmaceutical Co., Ltd.

⁽¹⁾ For a recent review, see: Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 10954.

⁽²⁾ For reviews on nitroso compounds, see: (a) Zuman, P.; Shap, P. *Chem. Rev.* **1994**, *94*, 1621. (b) Soghyuk, L.; Li, C.; Ann, H. W. *Chem. Rev.* **2002**, *102*, 1019. (c) Yamamoto, H.; Momiyama, N. *Chem. Commun.* **2005**, 3514. (d) Yamamoto, H.; Kawasaki, M. *Bull. Chem. Soc. Jpn.* **2007**, *80*, 595. (e) Bodnar, B. S.; Miller, M. J. *Angew. Chem., Int. Ed.* **2011**, *50*, 5630

⁽³⁾ For reviews on the formation of α-aminooxy and/or α-hydroxyamino carbonyl compounds using nitroso electrophiles, see: (a) Merino, P.; Tejero, T. *Angew. Chem., Int. Ed.* **2004**, *43*, 2995. (b) Janey, J. M. *Angew. Chem., Int. Ed.* **2005**, *44*, 4292. (c) Plietker, B. *Tetrahedron: Asymmetry* **2005**, *16*, 3453.

⁽⁴⁾ For recent reviews, see: (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (b) Marion, N.; Díez-González, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (c) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55. (d) Moore, J. L.; Rovis, T. Top. Curr. Chem. 2010, 291, 77. (e) Vora, H. U.; Rovis, T. Aldrichimica Acta 2011, 44, 3. (f) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. (g) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (h) Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 44, 2295.

^{(5) (}a) Corbett, M. D.; Corbett, B. R.; Doerge, D. R. *J. Chem. Soc.*, *Perkin Trans. I* **1982**, 345. (b) Corbett, M. D.; Doerge, D. R.; Corbett, B. R. *J. Chem. Soc.*, *Perkin Trans. I* **1983**, 765. (c) Wong, F. T.; Patra, P. K.; Seayad, J.; Zhang, Y.; Ying, J. Y. *Org. Lett.* **2008**, *10*, 2333.

^{(6) (}a) Seayad, J.; Patra, P. K.; Zhang, Y.; Ying, J. Y. Org. Lett. 2008, 10, 953. (b) Yang, L.; Tan, B.; Wang, F.; Zhong, G. J. Org. Chem. 2009, 74, 1744. (c) Wang, T.; Huang, X.-L.; Ye, S. Org. Biomol. Chem. 2010, 8, 5007. (d) Yao, W.; Bian, M.; Wang, G.; Ma, C. Synthesis 2011, 1998. (e) Sun, Z. -X.; Cheng, Y. Org. Biomol. Chem. 2012, 10, 4088.

⁽⁷⁾ Sun, Z.-X; Cheng, Y. Eur. J. Org. Chem. 2012, 4982.

^{(8) (}a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. (b) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (c) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.

⁽⁹⁾ Ferreira, L. M.; Marques, M. M. B.; Glória, P. M.C.; Chaves, H. T.; Franco, J-P. P.; Mourato, I.; Antunes, J-R. T.; Rzepa, H. S.; Lobo, A. M.; Prabhakar, S. *Tetrahedron* **2008**, *64*, 7759 and references therein

activate the nitrosoarene without disturbing the oxidative NHC catalysis,¹⁰ the *O*-selective acylation of nitroso groups would be achieved. Herein, we want to report an NHC-catalyzed oxidative esterification of aldehydes¹¹ with nitrosoarenes by using thiazolium carbene as a single dual-activation catalyst¹² to realize the selective formation of *O*-acyl hydroxylamines (Scheme 1b).

Scheme 1. NHC-Catalyzed Reaction of Aldehydes and Nitrosoarenes

a) N-selective attacking of Breslow's intermediates I or II on nitrosoarenes

b) NHC-catalyzed oxidative esterification (this work)

$$\begin{array}{c} O \\ R^1 \\ H \end{array} \xrightarrow{\text{NHC}} \left[\begin{array}{c} V \\ V \\ -X \end{array} \right] \xrightarrow{\begin{array}{c} O \\ N \\ -N \end{array}} \begin{array}{c} O \\ N \\ -N \end{array} \right] \xrightarrow{\begin{array}{c} O \\ N \\ -N \end{array}} \begin{array}{c} O \\ N \\ -N \end{array}$$

We began our investigation by examining the reaction between benzaldehyde (1a) and methyl 4-nitrosobenzoate (2a) in the presence of K₂CO₃ and NHC precursors C (Table 1, entries 1-4). After assessing four commonly encountered NHC catalysts, we were delighted to find that thiazolium salt C1¹³ was the most effective in promoting the desired C-O bond-forming process to furnish O-acyl hydroxylamine 3a in 86% yield without any detectable amount of amidation product 3a'. 14 In contrast, triazolium salt C3 gave a mixture of 3a (45%) and 3a' (12%) as the product (entry 3). When employing C1 as the precatalyst, the base played a critical influence on this reaction. Switching the base to t-BuOK afforded 3a in a diminished yield due to the decomposition of the product (Table 1, entry 5). In contrast, when DBU or Et₃N was used instead, no productive reaction was detected by TLC (entries 6 and 7). Moreover, a stoichiometric amount of K₂CO₃ with respect to 1a is essential to accomplish this conversion (Table 1, entry 8). Finally, among those solvents tested, THF was the choice, as it led to the best result (Table 1, entries 1 and 9-11).

Table 1. Optimization of Reaction Conditions^a

					$yield^b$ (%)	
entry	C	base	solvent	time (h)	3a	3a′
1	C1	K_2CO_3	THF	6	86	_
2	C2	K_2CO_3	THF	6	53	_
3	C3	K_2CO_3	THF	3	45	12
4	C4	K_2CO_3	THF	12	_	_
5	C1	$t ext{-BuOK}$	THF	0.5	77	_
6	C1	DBU	THF	12	_	_
7	C1	$\mathrm{Et_{3}N}$	THF	12	_	_
8^c	C1	K_2CO_3	THF	12	$44 (40)^d$	_
9	C1	K_2CO_3	Toluene	6	51	_
10	C1	K_2CO_3	$\mathrm{CH_2Cl_2}$	6	55	_
11^e	C1	K_2CO_3	$i ext{-PrOH}$	12	22	_

^a Unless otherwise noted, a mixture of **1a** (0.2 mmol), **2a** (0.24 mmol), catalyst **C** (10 mol %), K₂CO₃ (0.2 mmol), and solvent (2 mL) under N₂ was stirred at 0 °C. ^b Isolated yield. ^c K₂CO₃ (0.1 mmol). ^d Recovery of **1a** is in parentheses. ^e Some unidentified byproducts were formed.

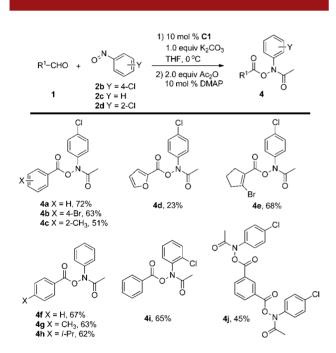
The reactions of a range of aldehydes 1 with nitroso compound 2a were next examined. As shown in Figure 1, a set of electron-deficient benzaldehyde derivatives with various substitution patterns all carried out this reaction smoothly to form the corresponding products 3b-f in good yields. Picolinaldehyde also readily participated in this process to give 3g in 91% yield. Unfortunately, those targeted products derived from aromatic aldehydes bearing an electron-donating group such as 4-methoxybenzaldehyde is too fragile under the current reaction conditions, only furnishing some unidentified byproducts. Gratifyingly, aliphatic aldehydes, such as n-octanal and 2-bromocyclopent-1-enecarbaldehyde, were found to be suitable substrates, and the desired products 3h and 3i were obtained in 56% and 49% yield, respectively. Finally, in each case, the current NHC-catalyzed reaction affords O-acyl products of methyl 4-nitrosobenzoate without any detectable N-acyl products.

To further explore the scope and synthetic application of the current NHC-catalyzed *O*-selective conversion of

Org. Lett., Vol. 15, No. 12, 2013

⁽¹⁰⁾ For reviews on oxidative NHC catalysis, see: (a) Sarkar, S. De; Biswas, A.; Samanta, R. C.; Studer, A. *Chem.—Eur. J.* **2013**, *19*, 4664. (b) Knappke, C. E. I.; Imami, A.; Jacobi von Wangelin, A. *ChemCatChem* **2012**, *4*, 937

⁽¹¹⁾ For a recent review on oxidative esterification, see: (a) Ekoue-Kovi, K.; Wolf, C. Chem.—Eur. J. 2008, 14, 6302. For selected examples upon NHC catalysis, see: (b) Noonan, C.; Baragwanath, L.; Connon, S. J. Tetrahedron Lett. 2008, 49, 4003. (c) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Tetrahedron 2009, 65, 3102. (d) Rose, C. A.; Zeitler, K. Org. Lett. 2010, 12, 4552. (e) Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 8727.


⁽¹²⁾ For a review on dual activation in NHC catalysis, see: (a) Biju, A. T.; Kuhl, N.; Glorius, F. *Acc. Chem. Res.* **2011**, *44*, 1182. For pioneering studies on electron-neutral alkenes, see: (b) He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She, X. *Tetrahedron* **2008**, *64*, 8797. (c) Biju, A. T.; Wurz, N. E.; Glorius, F. *J. Am. Chem. Soc.* **2010**, *132*, 5970.

⁽¹³⁾ Lebeuf, R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243.

⁽¹⁴⁾ Compound 3a' was synthesized according to ref 5c. For details see the Supporting Information.

⁽¹⁵⁾ For the application of *N,O*-diacyl-*N*-arylhydroxylamines, see: (a) Sakurai, T.; Sukegawa, H.; Inoue, H. *Bull. Chem. Soc. Jpn.* **1985**, *58*, 2875. (b) Chowdhury, N.; Dutta, S.; Nishitha, B.; Dasgupta, S.; Singh, N. D. P. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 5414. (c) Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Mesch, S.; Poole, D. L.; Roslan, I. A. *Angew. Chem., Int. Ed.* **2011**, *50*, 10957.

Figure 1. NHC-catalyzed formation of O-acyl hydroxylamines 3.

Figure 2. Formation of *N*,*O*-diacyl-*N*-arylhydroxylamines **4**.

nitrosoarenes, we subsequently investigated a two-step, one-pot approach to *N*,*O*-diacyl-*N*-arylhydroxylamines. Employing acetic anhydride (2 equiv) and DMAP (10 mol %) as acylation reagents in the second amidation step, ¹⁶ a set of aldehydes and other three nitrosoarenes **2b**—**d** were generally well tolerated, giving the desired products **4** in reasonably good yields (Figure 2). However, due to the decomposition of corresponding *O*-acyl hydroxylamine intermediates, furfural only furnished the targeted product **4d** in quite low yield. Intriguingly, isophthalaldehyde had also successfully been employed in this process to produce the corresponding product **4j** in 45% yield. On the other

hand, while electron-poor or electron-neutral nitrosoarenes carried out this reaction smoothly, those substrates with an electron-rich aryl moiety did not work in the reaction.

In addition, isocyanatobenzene and Boc₂O were also suitable acylation reagents instead of acetic anhydride for this one-pot protocol, giving the corresponding products **5** and **6** in 51% and 56% yield, respectively (eqs 1 and 2).

Scheme 2. Proposed Catalytic Cycle

Based on the experimental results, a proposed catalytic cycle is depicted in Scheme 2. Thus, the addition of in situ generated NHC to aldehydes 1 followed by proton transfer initially forms Breslow intermediates I. The latter nucleophilic species I then attack nitrosoarenes 2 at the oxygen atom to give intermediates IV. The *O*-selective nature of this step indicates a transition state of III, which involves a potential hydrogen-bonding interaction between the positively polarized proton of the enaminol and the nitrogen atom of the nitroso group. ¹⁷ Finally, the zwitterions IV release the NHC catalyst and give desired *O*-acyl hydroxylamines 3.

In summary, we have described an NHC-catalyzed *O*-selective addition of nitrosoarenes with aldehydes, giving a type of *O*-acyl hydroxylamines without any detectable

3068 Org. Lett., Vol. 15, No. 12, 2013

⁽¹⁶⁾ For optimization of conditions see the Supporting Information.

⁽¹⁷⁾ Hydrogen-bonding interaction has been previously proposed for the organocatalytic O-nitrosoaldol reaction; for selected references, see: (a) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808. (b) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247. (c) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293. (d) Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5374.

competing amidation byproducts. Moreover, upon this reaction, a one-pot approach to various *N*,*O*-diacyl-*N*-arylhydroxylamines has been developed. It is proposed that a dual-activation mode of the distinct carbene catalyst generated from thiazolium salt **C1** is critical to achieving complete *O*-selectivities in the reaction.

Acknowledgment. Financial support from NSFC (No. 21072166), New Century Excellent Talents in University

of Ministry of Education, and the Zhejiang Provincial Natural Science Foundation of China (No. R4110055) is gratefully acknowledged.

Supporting Information Available. Experimental details and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 12, **2013**